EE 508
Lecture 10

The Approximation Problem

Classical Approximations
— the Chebyschev Approximations



Review from Last Time

Butterworth Approximations
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* Analytical formulation:
— All pole approximation
— Magnitude response is maximally flat at w=0

— Goes to 0 at w=»
— Assumes value / 1 at w=1
1+82
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— Assumes value of 1 at w=0
—  Characterized by {n,¢}

 Emphasis almost entirely on performance at
single frequency

"On the Theory of Filter Amplifiers", Wireless Engineer (also called
Experimental Wireless and the Radio Engineer), Vol. 7, 1930, pp. 536-541.



Review from Last Tim

Poles of Tg(S)

for n even
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for n odd

utterworth Approximation
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Review from Last Time

Butterworth Approximation

What is the Q of the highest Q pole for the BW approximation? \

Highest Q
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Review from Last Time

Butterworth Approximation
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Fig. 17-3a Magnitude of the maximally flat approximation {¢ = 1) _ _ _
2 E Figure from Passive and Acti

. o Network Analysis and
Order needs to be rather high to get steep transition  synthesis, Budak



Review from Last Time

Butterworth Approximation

l:ll + -
| 0.2 04 06 08 10O 4 1.6 1.8 2.0
':_] I | ‘{ ’ o ul
-_____
103 B A _—
100 " — fr———
—\\Q"\ ne=72
- ..I l~.- 3 I
=2 N %
| — = 4
-..‘h__‘__
~300 § | — ‘ | o L e
n =40
—400 — 1 h‘ﬁ‘-\-‘"ﬁ
oo e | \_____‘
| ‘-’s =8 [
6004 =F1 e e
\Q
700 e
i e ————1}

Fig. 17-3b

Phase of the maximally flat approximation (= 1)

Figure from Passive and Acti
Network Analysis and
Synthesis, Budak

Phase is quite linear in passband (benefit unrelated to design requirements)



Butterworth Approximation

g Summary

> . . o

2 « Widely Us.ed Analytical Approximation

S « Characterized by {¢,n}

= « Maximally flat at w=0

_g * Almost all emphasis placed on characteristics at single frequency (w=0)
S « Transition not very steep (requires large order for steep transition)

-g « Pole Q is quite low

5 « Pass-band phase is quite linear (no emphasis was placed on phase!)

* Poles lie on a circle
« Simple closed-form analytical expressions for poles and |T(jw)|



Approximations

Magnitude Squared Approximating Functions — H,(w?)
Inverse Transform - H,(w?)—T4(S)
Collocation
Least Squares Approximations
Pade Approximations
Other Analytical Optimizations
Numerical Optimization
Canonical Approximations

— Butterworth o (i)

= Chebyschev } *
— Elliptic

— Bessel
— Thomson




Pafnuty Lvovich Chebyshev
Born May 16, 1821
Died December 8,1894
Nationality Russian
FieldsMathematician

Stepen Butterworth
1885-1958


http://en.wikipedia.org/wiki/Image:Flag_of_Russia.svg
http://en.wikipedia.org/wiki/Russia
http://en.wikipedia.org/wiki/Mathematician

Chebyshev Approximations

Type | Chebyshev Approximations 1
 Analytical formulation:

‘TLP (Jw)‘
A

15 |

All pole approximation of order n “
Magnitude response bounded between 1 and ;2
in the pass band I+e

Assumes the value of 1 at w=1
2

l+¢

Goes to 0 at w=-
Assumes extreme values maximum no times in [0 1]
Characterized by {n,€}

« Based upon Chebyshev Polynomials

Chebyshev polynomials were first presented in: P. L. Chebyshev (1854) "Théorie des
meécanismes connus sous le nom parallelogrammes," Mémoires des Savants
étrangers présentes a I'’Academie de Saint-Pétersbourg, vol. 7, pages 539-586.

Chebyschev had nothing to do with the design of filters but others applied his
mathematical results to the filters field!



Chebyshev Approximations

‘TLP (J a))‘
A

1

Type |l Chebyshev Approximations (not so common)

* Analytical formulation:

— Magnitude response bounded between 0 and
In the stop band 1

— Assumes the value of ;.2 at w=1
— Order=n
— Value of 1 at w=0
— Assumes extreme values maximum times
in [1 «]
— Characterized by {n,¢}
« Based upon Chebyshev Polynomials
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\/1+82
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Chebyshev Approximations

Chebyshev Polynomials

The Chebyshev polynomials are
characterized by the property that

the magnitude of the polynomial
assumes the extremum values of 0 and
1 a maximum number of times in the
interval [-1,1] and goes to *= for |x| large.

In polynomial form they can be expressed as
Co(x)=1
C,(x)=x
Cn+1(x)=2XCn(X) - Cn-1(X)
Or, equivalently, in trigonometric form as
(cos(n e arccos(x)) xe[-11]

C,, (x) =14 cosh(nearccosh(x)) x>1

\(—l)n cosh(noarccosh(—x)) x<-1

This image showes the first few

Chebyshey palynomialz of the first kind

inthe domain —1% = x =14,

=114 = v= 1% the flat 7, and 7y, 75, 75,
and

Figure from Wikipedia



Chebyshev Approximations

Chebyshev Polynomials

The first 9 CC polynomials:

Thiz image shows the first few

_ 6 4 2
Colx)=32x" —48x" +18x" —1 Chebyshey polynamials of the first kind
Cy (x —64x! —112x°> +56x° — Tx inthe domain -1% = 2= 1%,
-1a=yv=1l theflat 7y, and 7, 77, 7=,
Cg (x)=128x" —256x° +160x* —32x% +1 and 5. Figure from Wikipedia

« Even-indexed polynomials are functions of x2
« Odd-indexed polynomials are product of x and function of x2
« Square of all polynomials are function of x? (i.e. an even function of x)



Chebyshev Approximations

Type 1
Hew (W)= 1 H(w)= 21 2
1+52y2" T+e Fn(w )
Butterworth

A General Form for Low-pass Filter

Desired Characteristics of General Form of LP filters (derived from BW observations):

« F_(w?)close to 1 in the pass band and gets very large in stop-band
* These characteristic become more pronounced as n increases

The square of the Chebyshev polynomials have this property

1
HCC W)=
() 1+£2C2 (w)

This is the magnitude squared approximating function of the Type 1 CC approximation
(Often simply referred to as the Chebyshev approximation)



Chebyshev Approximations

Type 1

1
1+£2C2 (w)

Hee (w)=

Poles of H-(w) lie on an ellipse with none on the real axis




Chebyshev Approximations

Type 1
HCC("’U)= 212
1+£°CH (w) L Im
X
A m X
X
XX
Xxx X X XXX X
XX XX Re i >
XXXXXX Re
X
X
X
X

Poles of Tx(s)



Chebyshev Approximations

Equation for the ellipse:

(04

sinh[ 1

n

arcsinh(

9

g
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Type 1

g

cosh [1 arcsinh (

.

n

g

a is the real part and B is the imaginary part of
points on locus

Ellipse Intersect Points for select n and €

I - Y - A S - N R N LN S e §

E
1
0.25
0.1
0.05
1
0.25
0.1
0.05
1
0.25
0.1
0.05
1
0.25
0.1
0.05

Y int
1.099
1.600
2.351
3.242
1.024
1.140
1.294
1.456
1.011
1.052
1127
1.195
1.006&
1.034
1.071
1.108

Xint
0.455
1.250
2127
3.084
0.222
0.548
0.822
1.059
0.147
0.356
0.521

0.654
0110
0.265
0.354
0.478
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Chebyshev Approximations

Type 1 Alm
X
X
X
X
X
-
X Re
X
X
X
X

Poles of T(S)
Pk = —sin[%(’l +2k)}sinh{%arcsinh(iﬂ + jcos{%(’l +2k)} cosh{%arcsinh(iﬂ k=0....n-1

Properties of the ellipse
Pk =~  j Pk

2 12

29 :Bk —1

sinhFarcSihh(lﬂ cosh Farcsinh(lﬂ
n £ | n £




Chebyshev Approximations

Type 1
Tec(w)) 4

1 1
Even order

cv

—

Odd order

V1+&?

I >
1 w

*|Tcc(0)| alternates between 1 and 1 with index number
- Substantial pass band ripple 14 &2

» Sharp transitions from pass band to stop band



Chebyshev Approximations

Type 1

Fig from Allen and Huelsman

Sharp transitions from pass band to stop band



Chebyshev Approximations

Type 1

: 1

(o fea bl

g From Budak Text
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Fig. 17-6a Fourth-order Chebyshev and Butterworth magnitude characteristics

CC transition is much steeper than BW transition



Comparison of BW and CC
Responses

CC slope at band edge much steeper than that
of BW

Slope (0 =1)=—-n’ d
1+

~ =neSlope, (w=1)

E
Corresponding pole Q of CC much higher than
that of BW

Lower-order CC filter can often meet same
band-edge transition as a given BW filter

Both are widely used

Cost of implementation of BW and CC for same
order is about the same



Chebyshev Approximations

Type 1

Frch Budakﬂfexlﬂ
J

Analytically, it can be shown that, at the band-edge

d|Tgw (jo) _ &
do (1+82)%

d|Tcc (Jo) 2
3

dw - (l_i_gz)é

CC slope is n times steeper than that of the BW slope



Chebyshev Approximations

Type 1

From Budak Text
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Fig. 17-6b Fourth-order Chebyshev and Butterworth phase characteristics

CC phase is much more nonlinear than BW phase



Chebyshev Approximations

A Im

Type 1 o
X
| |1 : 1 . 1 1 : 1 X
Pk = —sm[ﬁm+2k)}s1nh[ﬁarcsmh(;ﬂ i]cos{%(1+2k)} cosh[aarcsmh(;ﬂ Ny
X -
X e
Maximum pole Q of CC approximation can be obtained by S i
considering pole with index k=0 N
m 1 1 m 1 1 A
Po = —sin{—}sinh[—arcsinh[—ﬂ irjcos{—}cosh{—arcsinh(—ﬂ X
2n n £ 2n n £
Po=a+jp
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2, 22
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i T
COS| —
1 (an
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&
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Chebyshev Approximations

Type 1

Comparison of maximum pole Q of CC approximation with that of BW approximation

~ S
COS( m j

| m
QuAaXBW = L 2N

Quaxcc=| ——F=~| I+

(7 :

2s1n(j 24 Tfj (1 (1
n Sln(2n sinh r1arcS|nh .

T
COS| —
(2n}
Quax.cc = Quax.sw |1+ 1 |
\ sinh(arcsinh(n
n E

Example — compare the Q’s for n=10 and =1

Qg=3.19 Qc=35.9
For large n, the CC filters have a very high pole Q!



Chebyshev Approximations

Type 2
1 1
HBW W)= H w)=
(@) 1+£%w2" (@) 1+52Fn (wZ)
Butterworth A General Form
Another General Form 1
H(w)=———
1+
£2F, (1/002)

« F_(w?)bounded by 1 in the stop pass band and gets very large in pass-band
« These characteristic become more pronounced as n increases

1

1
(A
+“Ca( )
Note: The second general form is not limited to use of the Chebyshev
polynomials

Heoo (w)=




Chebyshev Approximations

Type 2
1

1
(1)

« Equal-ripple in stop band

 Monotone in pass band

« Both poles and zeros present

* Poles of Type Il CC are reciprocal of poles of Type |

« Zeros of Type Il are inverse of the zeros of the CC Polynomials

Heoo (w)=

-1

gl el o]

n n & n n &

, 1
k=1J
cos(g(2k_1)]

n



Chebyshev Approximations

Type 2
1

1
(1)

Heoo (w)=

Tec(w)| 4
1 1 Odd order
1+12 S — =g
¢ -
Tec(w)) A

Even order

ol S
1 ___________________
1+52 >



Chebyshev Approximations

Type 2
1

1
(1)

Heoo (w)=

 Transition region not as steep as for Type 1
» Considerably less popular



Chebyshev Approximations

Type 2
_ 1
Heeo (w)= 1
1+
2~2
A Im & Cn (%ﬂ) Im
X
X
X
X s XX
X _ e X
X Re X Re
X 1 X X x X 1
X
X
: :

» Pole Q expressions identical (within constant scale factor) Since poles are reciprocals
« Maximum pole Q is just as high as for Type 1



Chebyshev Approximations

A Im Im
X

X

X
X
X X Re
X
X

X

X

\/

Re
XXX

X

Was Chebyshev ahead of his time?

What role did Chebyshev have in developing the
Chebysheyv filter?

What role did Chebyshev have in developing the
Chebysheyv filter approximation?

182
Were we building filters when Chebshev did his work?



http://www.quadrivium.nl/history/history.htm

History of Filter Theory

Michael I. Pupin

Recall: Samue

Around the year 1890 several people worked with the idea to improve the properties of long-distance transmission lines by inserting coils at regular intervals in these lines. Among those people were Vaschy and
Heaviside. The results were discouraging at that time. and no real progress was made. until in 1899 M.I. Pupin investigated these cables [1]. He found that a line which contains coils at regular intervals can be
represented by an equivalent uniform cable if the coils are spaced closely enough. The equivalence decreases if the distance between two adjacent coils is increased. and disappears altogether if this distance is larger
than half the wave length of the signal that is propagated in the cable. By his thorough mathematical and experimental research. Pupin found that the damping in cables for telegraphy and telephony can be
substantially reduced by judiciously inserting these coils, which has resulted in a widespread use of these so-called "Pupin lines' throughout the world.

The properties of these lines were further investigated by George A. Campbell. In 1903 he published some findings [2]. among which a peculiar frequency-dependent effect of Pupin lines. namely that they have a
well-defined eritical frequency that marks a sudden change in the damping characteristics. Below this frequency the damping is low. and dependent only on the parasitic cable losses. If these losses are zero, the
damping below the critical frequency is also zero. Above the critical frequency the damping is high, and almost independent of the cable losses. The transition at the critical frequency can be very sharp. The critical
frequency itself is determined by the spacing of the coils and corresponds to a wave length equal to twice the distance between them.

This effect was used to answer the question of how many coils are to be inserted in a given length of cable. but it was also immediately clear that this effect could be utilized. and Campbell pointed out that he used
this effect to eliminate harmonies in signal generators. In fact he used the cable as a lowpass filter, and he even mentioned the possibility of using the cable as a bandpass filter by replacing the coils by combinations
of cotls and capacitors.

A reel of cable is very large and therefore somewhat unwieldy as a filter, but the next step was so logical that it was undertaken independently in the same year (1915) in Germany by Karl Willy Wagner [3]. and in
America by Campbell [4]. The line was simulated by a ladder construction of impedances. an instance of which is shown in Figure 1.

Z

C

:I VOIJL

| Morse credited with introducing the concept of a telegraph in 1838

For almost a century the telegraph was the primary means for long-distance
communications

Performance degraded with distance and it was observed that judicious
placement of reactive elements along the cable could improve performance



Credited with inventing the concept of a filter in 1915

Michael I. Pupin

» Working on improving cables used for telegraph
« Nearly 75 years after the telegraph was introduced !!



Introduced Electrical Filters in 1915 to 1920 timeframe

Karl Willy Wagner George A. Campbell

Publication in 1919 Patent in 1915



Transitional BW-Chebyshev Approximations
H(w)=——

1 +52Fn (w2)

General Form

Define Fawi=w? Feo=C2(w)

Consider:
Hw)=— 1 0<k<n
1*+e"FBwikFce(nk)
H(w)= L 0<O<I

1452 [(Q)FBWK +(1- Q)FCC(n-k)J

» Other transitional approximations are possible
» Transitional approximations have some of the properties of both “parents”



Transitional BW-CC filters

2 1 1
H = @)=
ABW(a) ) 1+ &' HACC( ) 1+52(C,,(a)))2
H (0)=
o l+e(0)C (o)
0<k<nm
1
H ) =
a2 (a) ) 14 gz|:(9a)2" 4+ (1 — Q)Cj (CO):I
0<0<1

Other transitional BW-CC approximations exist as well



Transitional BW-CC filters

|
H 2 f—
ATRANY (a) ) 1+ &’ (a)”‘ ) C,j_k (a))

H,.(o)

1400 +(1-0)C (0)]

Transitional filters will exhibit flatness at w=0, passband ripple, and
intermediate slope characteristics at band-edge



Distinguish Between Circuit and
Approximation

Lowpass Butterworth Filter.

Audio 10 ka 10 ka 10 ka 10 kQ 10 kQ

—— —— ——l
Input

+l;,—|—l_b—b—1_ il
|::q 2 *—"—’{
2 = c3 — s TL

L rad LT

http://www.egr.msu.edu/classes/ece480/capstone/fall11/group02/web/Documents/How%20t0%20Design%2010%20kHz%20filter-Vadim.pdf

Active Butterworth Lowpass Filter Calculator

Unity Gain in the Passband, 24 dB / Octave, 2 x 2nd order

» Maximally flat near the center of the band

» Smooth transition from Passband to Stopband
» Moderate out of band Rejection

= Low Group Delay variation near center of band

http://www.changpuak.ch/electronics/Butterworth_Lowpass_active_24dB.php

Note that what distinguishes between different filter approximations having the same number of cc poles and

zeros and the same number of real axis poles and zeros is the component values of a given circuit, not the
filter architecture itself



Chebyshev Approximations

from Spectrum Software:

Chebyshev Filter Macro

Filters are a circuit element that seem to mesh perfectly with the macro capability of Alicro-Cap. The macro capability iz designed to
produce components that can be wared through the uze of parameters. Most filters consist of a basic structure whoze component values
can be modified through the use of well known equations. & macro component can be created that represents a specific filter's type, order,

responze, and implementation, The circuit below is the macro circuit for a low pazs, 2nd order, Chebyzhey filker with Tow-Thomas
implementation.

parameters{Gain, Rippleds, ) ;‘;NER*RD
My
scaleR g0*RO define wr sqrifw(b 0y
R2 define g fwrhvih1h
A define RO 1w )
Cthiscale: CihiscaleC define Cfh 1n
o1 o2 ;g
' [ I — At
YEE WEE YEE
- zcaleR*R0 - Tk -
1 R4 - W2 R& w3
| Qut_ —hA—e —AM—I—‘
Ny ele L WG L WCC
— (scaleR*RD}IGaing — —
[=13]
WISG [l [l
In N
L.

YE

I E
:|: define scaleR (1 00CZP) J_ Riph1
L .define scalec {1 00%0*0)

* Note that this is introduced as a Chebyshev filter, the source correctly points out that it implements the CC
filter in a specific filter topology

* Itis important to not confuse the approximation from the architecture and this Tow-Thomas Structure can
be used to implement either BW or CC functions only differing in the choice of the component values
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Stay Safe and Stay Healthy !
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