
EE 508

Lecture 10

The Approximation Problem

Classical Approximations 

    – the Chebyschev  Approximations



Butterworth Approximations

• Analytical formulation:
–   All pole approximation

–    Magnitude response is maximally flat at ω=0

–    Goes to 0 at ω=∞

–     Assumes value            at ω=1

–     Assumes value of 1 at ω=0

–     Characterized by {n,ε}   

• Emphasis almost entirely on performance at 
single frequency

"On the Theory of Filter Amplifiers", Wireless  Engineer (also called 

Experimental Wireless and the Radio Engineer), Vol. 7, 1930, pp. 536-541. 
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Butterworth Approximation
Poles of TBW(s)
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Butterworth Approximation
What is the Q of the highest Q pole for the BW approximation?  
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Butterworth Approximation

Order needs to be rather high to get steep transition

Figure from Passive and Active 

Network Analysis and 

Synthesis, Budak
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Butterworth Approximation
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Phase is quite linear in passband (benefit unrelated to design requirements)

Figure from Passive and Active 

Network Analysis and 

Synthesis, Budak
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Butterworth Approximation

• Widely Used Analytical Approximation

• Characterized by {ε,n}

• Maximally flat at ω=0

• Almost all emphasis placed on characteristics at single frequency (ω=0)

• Transition not very steep (requires large order for steep transition)

• Pole Q is quite low

• Pass-band phase is quite linear (no emphasis was placed on phase!)

• Poles lie on a circle

• Simple closed-form analytical expressions for poles and |T(jω)|

Summary
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Approximations

• Magnitude Squared Approximating Functions – HA(ω2)

• Inverse Transform - HA(ω2)→TA(s)

• Collocation

• Least Squares Approximations

• Pade Approximations

• Other Analytical Optimizations

• Numerical Optimization

• Canonical Approximations
– Butterworth

– Chebyschev

– Elliptic

– Bessel

– Thomson
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Pafnuty Lvovich Chebyshev

Born  May 16, 1821

Died December 8,1894

Nationality Russian

FieldsMathematician

Stephen Butterworth
1885-1958

http://en.wikipedia.org/wiki/Image:Flag_of_Russia.svg
http://en.wikipedia.org/wiki/Russia
http://en.wikipedia.org/wiki/Mathematician


Chebyshev Approximations

• Analytical formulation:
–   All pole approximation of order n

–    Magnitude response bounded between 1 and 

       in the pass band

–    Assumes the value of               at ω=1

–    Goes to 0 at ω=∞

–     Assumes extreme values maximum no times in [0 1] 

–    Characterized by {n,ε}   

• Based upon Chebyshev  Polynomials
Chebyshev polynomials were first presented in: P. L. Chebyshev (1854) "Théorie des 

mécanismes connus sous le nom parallelogrammes," Mémoires des Savants 

étrangers présentes à l'Academie de Saint-Pétersbourg, vol. 7, pages 539-586. 
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Type I Chebyshev Approximations
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Chebyschev had nothing to do with the design of filters  but others applied his 

mathematical results to the filters field!



Chebyshev Approximations

• Analytical formulation:

–    Magnitude response bounded between 0  and            

in the stop band

–    Assumes the value of               at ω=1

–    Order = n

–    Value of 1 at ω=0

–    Assumes extreme values maximum times

 in [1 ∞]

–    Characterized by {n,ε}   

• Based upon Chebyshev  Polynomials
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Type II Chebyshev Approximations  (not so common)
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Chebyshev Approximations
Chebyshev Polynomials

The Chebyshev polynomials are 

characterized by the property that 

the magnitude of the  polynomial 

assumes the extremum values of 0 and 

1 a maximum number of times in the 

interval [-1,1] and goes to ∞ for |x| large. 

In polynomial form they can be expressed as

C0(x)=1

C1(x)=x

Cn+1(x)=2xCn(x) - Cn-1(x)

Or, equivalently, in trigonometric form as
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Chebyshev Approximations
Chebyshev Polynomials

Figure from Wikipedia
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The first 9 CC polynomials:

• Even-indexed polynomials are functions of x2

• Odd-indexed polynomials are product of x and function of x2

• Square of all polynomials are function of x2 (i.e. an even function of x)



Chebyshev Approximations
Type 1
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Butterworth A General Form for Low-pass Filter

• Fn(ω
2) close to 1 in the pass band and gets very large in stop-band

• These characteristic become more pronounced as n increases

Desired Characteristics of General Form of LP filters (derived from BW observations):

The square of the Chebyshev polynomials have this property
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This is the magnitude squared approximating function of the Type 1 CC approximation

(Often simply referred to as the Chebyshev approximation)



Chebyshev Approximations
Type 1
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Poles of HCC(ω) lie on an ellipse with none on the real axis



Chebyshev Approximations
Type 1
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Chebyshev Approximations
Type 1 Im
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α is the real part and β is the imaginary part of 

points on locus



Chebyshev Approximations
Type 1 Im

Re

Poles of TCC(s)
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Properties of the ellipse

k=0….n-1



Chebyshev Approximations
Type 1

ω
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Odd order

• |TCC(0)| alternates between 1 and                 with index number 

• Substantial pass band ripple

• Sharp transitions from pass band to stop band
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Chebyshev Approximations
Type 1

Sharp transitions from pass band to stop band

Fig from Allen and Huelsman



Chebyshev Approximations
Type 1

CC transition is much steeper than BW transition

From Budak Text



Comparison of BW and CC 

Responses

• CC slope at band edge much steeper than that 
of BW

• Corresponding pole Q of CC much higher than 
that of BW

• Lower-order CC filter can often meet same 
band-edge transition as a given BW filter

• Both are widely used

• Cost of implementation of BW and CC for same 
order is about the same
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Chebyshev Approximations
Type 1

From Budak Text

Analytically, it can be shown that, at the band-edge
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CC slope is n times steeper than that of the BW slope



Chebyshev Approximations
Type 1

CC phase is much more nonlinear than BW phase 

From Budak Text



Chebyshev Approximations
Type 1
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Maximum pole Q of CC approximation can be obtained by

considering pole with index k=0
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Chebyshev Approximations
Type 1

Comparison of maximum pole Q of CC approximation with that of BW approximation
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Example – compare the Q’s for n=10 and ε=1

QBW=3.19               QCC=35.9

For large n, the CC filters have a very high pole Q !



Chebyshev Approximations
Type 2
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Butterworth A General Form
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Note:  The second general form is not limited to use of the  Chebyshev 

polynomials 

• Fn(ω
-2) bounded by 1 in the stop pass band and gets very large in pass-band

• These characteristic become more pronounced as n increases



Chebyshev Approximations
Type 2
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• Equal-ripple in stop band

• Monotone in pass band

• Both poles and zeros present

• Poles of Type II CC are reciprocal of poles of Type I

• Zeros of Type II are inverse of the zeros of the CC Polynomials
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Chebyshev Approximations
Type 2
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Chebyshev Approximations
Type 2

( )

( )1

CC2

2 2
n

1
H ω =

1
1+

C
ω



1

2

1

1
1


+

( )CCT ω

• Transition region not as steep as for Type 1

• Considerably less popular



Chebyshev Approximations
Type 2
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Chebyshev Approximations

1
Re
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Im

1821-1894

Was Chebyshev ahead of his time? 

What role did Chebyshev have in developing the 

Chebyshev filter?

What role did Chebyshev have in developing the 

Chebyshev filter approximation?

Were we building filters when Chebshev did his work?



http://www.quadrivium.nl/history/history.htm

l

Recall:  Samuel Morse credited with introducing the concept of a telegraph in 1838 

For almost a century the telegraph was the primary means for long-distance 

communications

Performance degraded with distance and it was observed that judicious 

placement of reactive elements along the cable could improve performance



Credited with inventing the concept of a filter in 1915

• Working on improving cables used for telegraph

• Nearly 75 years after the telegraph was introduced !!



Introduced Electrical Filters in 1915 to 1920  timeframe

Patent in 1915Publication in 1919



Transitional BW-Chebyshev Approximations
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• Other transitional approximations are possible

• Transitional approximations have some of the properties of both “parents”



Transitional BW-CC filters
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Other transitional BW-CC approximations exist as well



Transitional BW-CC filters
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Transitional filters will exhibit flatness at ω=0, passband ripple, and 

intermediate slope characteristics at band-edge



Distinguish Between Circuit and  

Approximation

Note that what distinguishes between different filter approximations having the same number of cc poles and 

zeros and the same number of real axis poles and zeros is the component values of a given circuit, not the 

filter architecture itself

http://www.egr.msu.edu/classes/ece480/capstone/fall11/group02/web/Documents/How%20to%20Design%2010%20kHz%20filter-Vadim.pdf

http://www.changpuak.ch/electronics/Butterworth_Lowpass_active_24dB.php



Chebyshev Approximations
from Spectrum Software:

• Note that this is introduced as a Chebyshev filter, the source correctly points out that it implements the CC 

filter in a specific filter topology 

• It is important to not confuse the approximation from the architecture and this Tow-Thomas Structure can 

be used to implement either BW or CC functions only differing in the choice of the component values



Stay Safe and Stay Healthy !



End of Lecture 10
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